ma———

AD-R160 875 THE DESIGI AND IMPLEMENTATION OF AN OPERATING SYSTEM /1
0 THE IBM PERSONAL CDIPUTER(U) RIR FORCE INST OF TECH
IGHT-PATTERSON AFB OH A J DEESE DEC 84
UNCLASSIFIED ﬁFIT/CI/NR-95-145 F/G 9/2

o ARV ERACEACIA A AL il A A A Sl S el Sel Al ol Ard Ut AR L LA r g A
RAENEL AL AN A A S AC AU femo T Ty
A

"
SOOI
iy '.:*“‘M"’
.

\]

[y
-

F==
!"H.N
N fMen

o
FFEER
I

FEE
==

& muZ 0
1] :. = :
L4 bt
| —

N
>

|

iz s e

Il

-..
ot
. MICROCOPY RESOLUTION TEST CHART
N NATIONAL BUREAU OF STANDARDS ~ 1963 - 4
2
2
..'
l~'
LY

a
2 e 0,

. T m W RS TR T RN LT — ——y
R S R R R Y T T T T T T T T T~ — BSRARERER TR

LINC] ASS_ — /\
SECURITY CLASSIFICATION OF THIS PAGE (When Ilnlihnlo'od)') l . .
REPORT DOCUMENTATION PAGE U e omm e o

\. REPORT NUMBER ~\ [2. GOVT CCESSION NO. CIPIENT’S CATALOG MUMBER
AFIT/CI/NR 85-145T \

4. TITLE (and Subtitle) y 5. YYPE OF REPORY & PERIQOD COVERED
The Design And Implementation Of An THESTS/UVSSERTAVION
Operating System For The IBM Personal 6. PERFORMING ORG. REPORT NUMBER

Computer
7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(e)

Albert James Deese, Jr.

10. PROGRAM ELEMENT, PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS R oAk e A IERS
AFIT STUDEINT AT: Georgia Institute of
Technology

m 1}, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR Dec 8
a WPAFB OH 45433 - 6583 13, NUMBER OF p?ccs

54

o 14, MONITORING AGENCY NAME & ADDRESS(!{ dillerent {rom Controlling Ollice) 15, SECURITY CL ASS. (of thie report)
(‘) UNCLASS
- \ 15a. ?CESE-I;(??E"CAT'ON/OO'NGRADWG
$ 16. DISTRIBUTION STATEMENT (of this Report) 7
) | APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED e

17. DUSTRIBUT'ON STATEMENT (of the abstract entered In Block 20, if diflerent lrom Report)

A

18. SUPPLEMENTARY NOTES
APPROVED FOR PUBLTC RELEASE: IAW AFR 190-1 - WOLAVER 11efy)-
Dean for Research and
Professional Developmen
AFIT, Wriqght-Patterson AFE [OH

19. KEY WORDS (Continue on toverse side if necesasary and identify by block number)

20. ABSTRACT (Continue on reverse aide il ne-essary and ldentity by block number)

FTTACHED

DD ';oau 1473 EDITION OF 1 NOV 6515 OUSQOLETE JNCLASS

JAN 73

SECURITY CLASSIFICATION 00145 ann e Entered)
»
85" 11 76

''''''''''''''
.............

Paiag, \lludie - S SR e S it e T Bt A _Rih Rt Sl _Ba B

-
. .

[Hs
Y
~

]
/

‘Wun“’ yen

1

, SUMMARY

/ This thesis documents the design and implementation
of an operating system for the Georgia Institute of
. -3 -
R Technology Information aﬁE“CUmeter Science Laboratory

13

(GIT/ICSL) The operatlng system‘ designated PCOS, was<-

————— e b e e o

developed in order to provide a pedagoglcal ald whlch could

be used to provide students with better understandlng of

a
2 o Y
] 1" . \'"\Q "I’ _/AP Ilf;\q /~,f"“"\ !

(‘
operating system principles. PCO 1s 1ntended to be a
simple yet functional operating system which students can
analyze, modify, and extend.

PCOS is an acronym wp{ch stands for Personal

Computer Operating System. ~PCOS was designed and

———

. oo vy b
implemented on an IBM Personal Computer (IBM PC). However,
the strategy used to structure PCOS along with the
algorithms used to implement PCOS are applicable to most
contemporary computer systems.

This thesis presents the requirements and design
criteria which were used to guide the design of PCOS. The
decisions made during the design of PCOS are discussed.

The algorithms and data structures used to implement PCOS

are discussed. And, further development of PCOS is also

discussed.

R R T T W W W W — Tws v CAEA RN ISR AT T A AT e Nl Sk And A Gufl Judt Sad Todl Sdl Bl Tadl Al Sl ot Sod

85-145T

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value and/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: The Design and Implementation of an Operatiny System for the

IBM Personal Computer
AUTHOR: Albert James Deese, Jr.

RESEARCH ASSESSMENT QUESTIONS:
1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enough that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. $

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

() a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME GRADE POSITION

ORGANIZATTON LOCATION

STATEMENT(s):

. R LR
L e I e e .t by
PR RPN

S A N AN RALI A RS NN N T e Nt e e et SO
ORI AL A W N PP S P e P Dy S PP AP RPNy S PRI SRI LIPS IR

o i late S Shavctiatt Binte Sindes Sadt e Suttusiisr Siui Sl Aafa- ISt RbAC S-S A B A AL A A A A A A
Padi - N A . AU S e e e AN S e B - -

i

FOLD DOWN ON OUTSIDE - SEAL WITH TAPE)
%
Af1T/NR l II II I NO POSTAGE
WRICHT-PATTERSON AFB OM 43433 NECESSARY
F MAILED
OFFICIAL DUSINESS IN THE

PENALTY FOR PRIVATE USE. $300 UNITED STATES
S
e ——
S
[F—
[r———
S
BUSINESS REPLY MAIL ——
FIRST CLASS PERMIT MO. 73236 WASHINGTON D.C. r—————
[Fre————
POSTAGE Will BE PAID BY ADORESSEE [F————
[———
EEEE———
AFIT/ DAA T —
[e————
Wridn-l’lttel'lon AFB OH 45433 ——————
[e——
[————
[r—————
CEE—

FOLD IN

A

R T T N ..

- D e e e e e et e e e e et . o e e e et N

Bt et S T e e . e PR P P S e T ST P x <t e a PRSI IO L I T -

ot . o I I N ST R S SR S PR A STt T e e B - L S e S S R S S i S
et e et R SRR, Sl T WA P INT Wt Vi WA WP Wi iy T TR0 WG TP WL AL I DT T P T WG, R P, L W W . PRI, T S

THE DESIGN AND IMPLEMENTATION OF AN OPERATING SYSTEM
FOR THE IBM PERSONAL COMPUTER

A THESIS
Presented to
the Faculty of the Division of Graduate Studies
By

Albert James Deese, Jr.

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Information and Computer Science

Georgia Institute of Technology

December 1984

T R R N T o T T N W N T N T T N S TV T Ry T T " v

The Design and Implementation of an Operating System

for the IBM Personal Computer

¥

Approved:

&_ artln #. McKendry, Chairman

L N

Richard J. {LleBlanc

[P S

| Pin-fee CQéh
PER cALC JS’ 5 //'}/

Date approved by Chairman “ ok

v
]

v
N
ERE

I AR L)
» S s
"

(L
KA
. e

ii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. Martin
S. McKendry for the assistance and guidance he provided
over the course of this project. I would also like to
thank the members of my reading committee Dr. Richard J.

LeBlanc and Dr. Pin-Yee Chen.

I am especially grateful to my wife, Amelia, for her
support during the course of this project, and assistance

in preparing the final manuscript.

.............

iii

TABLE OF CONTENTS

Page
LIST OF TABLES . . . ¢ & v ¢ ¢ v ¢ v ¢ o o o o o o iv

: LIST OF ILLUSTRATIONS « ¢ ¢ ¢« 4 ¢ ¢ o o o« o & v
SUMMARY L] L] L] L L] - L) L . . - - . L] . - - L] - vi
Chapter

I. INTRODUCTION . ¢ . & ¢ v ¢ v v v & o o o o & 1

: | II. THE PCOS PROJECT '+ v v v v v v v o v o o v« 4
ﬁ ’ Requirements . . . ¢« . ¢ ¢ ¢« o o o o o & . 4

Design . ¢ ¢ ¢ 4 ¢ ¢ 4 ¢ 4 e e 4 4 e & o 4

Implementation & ¢ ¢« ¢ & & & o« . 8
III. FURTHER RESEARCH AND DEVELOPMENT 26
g IV. CONCLUSION + & v v v v v v v e e e e e v 29
i REFERENCES v & v v v v e v v e v e e e e e e e e 31

- APPENDIX

A. KERNEL PRIMITIVES « « « « « . 35

iv
r LIST OF TABLES
- % Table Page
Ef ' 2-1 Kernel Services . . ¢ ¢ ¢ o & o & o + o o 4 o« 11
& ? 2-2 Process Control Block « « « .« . 13
! i 2-3 Memory Control Block . . ¢« & . & ¢ & & ¢« o + & 16
? i 2-4 Interrupt Vector Status Table Entry 18
. ‘ 2-5 Interprocess Communication Control Block . . . 19
2-6 Device Driver Services . . ¢ . ¢ ¢ o o v o . 22
E 2-7 File Server Services « + « ¢ ¢« o o . 23

2-8 CLI Commands . ¢ o & o o o o o o o o o o o o @ 24

3-1 Proposed Exception Management Services 26

LT e

T

CHAPTER I

INTRODUCTION

Basically, an operating system is a resource

manager. It is responsible for the effective and efficient

w3

management of computer hardware. Consequently, the

o

Hrgg q’nmr S

operating system is oue of the key components of a computer

system.

The study of operating systems is an integral part
of any progressive computer science curriculum,

Introductory courses present the general principles of

operating systems while advanced courses present operating

system design strategies and implementation techniques in

greater detail.

Courses on operating systems should provide insight

into the design and implementation of
However, Lions (1978) points out that

general principles alone proves to be

intellectual fodder for students with

experience."

operating systems,
the presentation of
"rather dry

limited practical

»
!
0
b

In an effort to provide students with a better
understanding of the design and implementation of operating
systens,

educators such as Lions have proposed several

different approaches for teaching operating system

e v -
SRS RO

T ?,-'h« E*q

- - -
.»,: Ty
Clete e L

P TP SO P R
[N MR WA,

.'.."" LI TN S ST " et e e . “ e
SV AERORE RS R L o O S S O O R

principles. Since students are usually more interested in

seeing something work than reading theoretical examples,
the approaches emphasize the study and development of
actual operating systems. One approach is to conduct a
comprehensive study of an actual operating system in an
effort to show students how theory has been put into action
(Lions, 1978; McCharen, 1980). Another approach is to
modify or extend an existing operating system (Bauer,
1975). Yet another approach is to require students to
develop a pedagogical operating system from scratch
(LaGarde, Olivier & Padiou, 1981; Lane, 1981; Wadland
1980).

This thesis documents the design and implementation
of PCOS, an operating system for the Georgia Institute of
Technology Information and Computer Science Laboratory
(GIT/ICSL). The purpose of this research project is to
initiate development of an operating system for the IBM
Personal Computer which can be used to provide students
with a better understanding of operating svstem principles.
PCOS is intended to be a simple yet functional operating
system which students can analyze, modifv, and extend.
PCOS is an acronym which stands for Personal Computer
Operating Svstem.

The nexr chapter discusses the design and the
implementation of PCOS in detail. Chapter Three discusses

turter development of PCOS. And, Chapter Four presents

.‘-\-.-.-...\.1..'-.,._._.‘..._A_ e e e e

Aol L A A A T " e e S 2 B B Ao dhoilh BRE hhodl - w
ST LT AT T Y ~T e L A N N S T N S IV WY I N I VI T vy T w v i |

.

conclusions derived from this project.

;.
(3
.
*

- CHAPTER II

THE PCOS PROJECT

v Requirements

As stated in the previous chapter, the purpose of

this research project is to develop an operating system

which can be used to provide students with a better

understanding of operating system principles. The general

requirement is that it be a good example of current

n’- <t “)

operating system design practice.

LRt b

The specific requirements for PCOS were established
after reviewing the capabilities of several commercially
available operating systems (Banahan & Rutter, 1983;

Deitel, 1983; Holt, 1983; Madnick & Donovan, 1974; McKeag,

1976; Zarrella, 1981, 19682). It was decided that PCOS
should offer the following capabilities:

(1) provide a single-user environment,

(2) support multiprogramming, and

(3) support sequential disk file organization,.

Design

Criteria
Before discussing the design decisions, it is
necessary to discuss the general design criteria used to

guide this development effort. The general design criteria

- ol il 01247

RO T L T TH NPV IO —

(R R T T

SRTR S b L I

.

P

~ Ve . e P A i e MM ek el i e Ll S S et S el Avedh 2
- . LR S A O S i

;' L
g ..

are as follows: simplicity, efficiency, and
maintainability.

PCOS is intended to be used to provide students with
a better understanding of operating system principles.
Without simplicity a complete understanding of the system
would not be possible. Therefore, PCOS should not contain
any unnecessary complexity. It should be based on a small
set of relatively simple concepts.

PCOS is also intended to be a simple yet functional
operating system. In order to be truely functional it must
be efficient,.

To be able to adapt to a constantly changing
environment, PCOS should be easy to maintain. As a result,
PCOS should be well structured.

Decisions

This section discusses the major design decisions
made during the development of PCOS., The rational behind
each decision is presented.

First, a computer system was selected for the
initial implementation of PCOS. The Information and
Computer Science Laboratory at Georgia Tech has several
computer systems which are available on a regular basis for
student research. However, most of the systems are multi-
user systems. Since it would be to costly in terms of lost
service alone to dedicate a multi-user system to a single

user, they were eliminated from further consideration. 1In

v e ey

S e W e e e

- . J Gt e a3 Wy e v
e e WY S DAL ‘e N S A S AN i e Ar A AT o Sl Mg S B~ Bl B Dt P o danit Sar- i oare T Y v S

addition to the multi-user systems, there are several
single-user systems, Of the single-user systems, the IBM
PC seemed to be the most promising. A typical IBM PC
configuration includes a CPU, a keyboard, a monitor, 128k
bytes of internal memory,‘2 5-1/4" floppy disk drives, and
a dot-matrix printer. In addition, the Intel 8088
microprocessor used in the IBM PC supports both segmented

memory and interrupts. Given the above considerations, the

IBM PC was selected.

Once the implementation system was selected, the
implementation language was chosen., The choice of an
implementation language was easy. At the time, only a few
languages were available: Pascal, Fortran, Basic, and
assembly language. Operating systems are often implemented
in assembly language for space and time considerations
(Freedman, 1977). However, since it is easier to develop
and maintain a program written in a high-order language

(HOL), Pascal was chosen to be the primary design and

implementation language of PCOS. In order to enhance

both maintainability and portability, assembly language was
used to code only those routines which were neither
feasible nor practical to implement using Pascal.

Next the strategy used to structure the PCOS was

choosen. Both the monolithic monitor approach and the
kernel approach are strategies which can be used to

structure operating systems (Deitel, 1983; Holt, 1983).

DA e ettt Bainde Ani g il Sedb ekl Sall Sadi Sk -t g A i G § o itk ah gl |

The monolithic monitor approach collects the
resource management functions provided by an operating
system into a single, monolithic module., The main
advantage of the monolithic monitor approach is its
simplicity. All operating system activity takes place in a
single module. The main disadvantage is the excessive
amount of time external interrupts are disabled. In order
to maintain the integrity of the tables it maintains, the
monitor disables external interrupts whenever it is
running., Since all resource managment activity takes place
within the monitor, it is possible that interrupts (e.g.,
information) may be lost.

The kernel approach is an alternative to the
monolithic monitor approach. An operating system based on
the kernel approach is composed of a set of asynchronous
processes and a small executive module (or kernel),
Resource management functions are placed in interruptable,
asynchronous processes. The kernel provides a set of
primitive operations that support the cooperation of
asychronous processes. Using the kernel approach,
interrupts are disabled for a shorter period of time. In
addition, the operating system is easier to maintain since
data structures and algorithms are encapsulated in
independent processes., In an effort to create a highly
modular and understandable system, the decision was made to

use the kernel approach to structure PCOS.

MO i

1
i

RLAIL . (L

As mentioned in the preceding discussion, the kernel
must provide a set of primitive operations that support the
cooperation of asynchronous processes. After reviewing the
literature generated by past operating system development
efforts (Agoston, 1977; Bauer, 1975, 1976; Bayer &
Lycklama, 1975; Brinch-Hansen, 1970, 1973; Burgett &
O'Neil, 1977; Crowley, 1981; Faro, Messina & Serra, 1981;
Frank & Theaker, 1979; Garetti, Laface & Rivoira, 1981;
Gorski, 1980; Hammond, 1980; Haridi & Thorelli, 1978; Xahn,
1978; Lycklama & Bayer, 1978; Madnick & Donovan, 1974;
Mark, Eggenberger & Nehmer, 1977; Pohjanpalo, 198l; Seidel
& Grebe, 1979; Shaw, Weiderman, Andrews, Felcyn, Rieber &
Wong, 1975; Sincoskie & Farber, 1980a, 1980b; Solomon &
Finkel, 1979; Thorelli, 1978), it was decided that the
kernel should provide the following services:

(1) process management,

(2) memory management,

(3) interrupt management,

(4) interprocess communication management, and

(5) timer management,

Implementation

System Architecture

PCOS is composed of several hierarchical layers
called levels, The levels are designed to be highly

independent by encapsulating resources and data

.. N T T
N Ot P S B S
P I T T N T R

.................................

D)
A

-
.
s Y

LRy
SRR AL s

e v

9
representations within each level, Such encapsulation of
objects allows levels to represent abstract views of the
objects for which they are responsible. Figure 2-1 depicts
the different layers that make up PCOS.

e Tt + +
tExecutive! ! User !
Level 3 !Process ! ! Process !
! 1]
e + fem—————- +
! !
! ! o —emm— +
! ! ! File !
Level 2 ! ! ! Server !
! ! ! !
! ! o — e +
! ! ! tomm e ——— +
! ! ! ' I/0 !
Level 1 ! ! ! ! Drivers !
! ! ! ! !
! ! ! $ommmmnne +
! ! ! !
e i et et ettt +
Level 0 ! Kernel !
R e ittt D P +
Figure 2-1. PCOS System Hierarchy

The lowest layer, level 0, is the system kernel.
The kernel is the nucleus of the operating system. It
provides a basic set of services which are available to all
processes in the system. These services facilitate process
management, memory management, interrupt management,
interprocess communication management, timer management,
and debugging.

Level 1, the Basic I/0 System (BIOS), is composed of

a set of processes known as device drivers. These device

A

o ————— S - rh

FAVY

i

. 0

A A .t .
PRI WS W W, PSSP WAy

T T

L
-

Py PR p——

Ly !‘,-;: .

-

-
€4
I
3

PR A M sanianth Mt Sendl Ml Jeash At Jeuih et)

10

drivers are responsible for providing I/0 device support.
PCOS currently includes a console driver, a disk driver,
and a printer driver.

The Extended I/0 System (XIOS), level 2, currently
includes a single process, the File Server. The File
Server presently supports only sequential file access.

The highest layer, level 3, is composed of both user
and system processes. Currently, the only processes which
reside at level 3 are the Executive Process (EXEC) and the
Command Language Interpreter (CLI). EXEC is responsible
for starting the system. It does this by first creating
and then activating the other processes which compose PCOS.
And, the CLI is the process responsible for providing the
user interface to PCOS.

Component Details

The Kernel., The kernel provides a set of basic
services which can be used by any process in the system.
The kernel primitives or services can be grouped into six
functional categories: process management, memory
management, interrupt management, interprocess
communication management, timer management, and debugging.
Table 2-1 lists the services provided by the kernel. And,
Appendix A contains descriptions of the kernel primitives.

The first category of primitives manipulate

processes., Processes are programs that perform a specific

function. A process consists of a sequence of

L nadh S enes

R N A DAY AL A A Al

Table 2-1.

- —— —— . — ——— — - - —— — —

Process Management

Memory Management

Interrupt Management

Interprocess Communication

Management

Timer Management

Debugging

instructions, and a set of

categorized as either user or system processes.

resources.

St Ml A Ak A g g Iane e e R

11

Kernel Services

- — — — —— ——— ———————— ——— —————— . — " —

Create Process
Activate Process
Sleep

Suspend Process
Destroy Process
Find Process

Allocate Memory
Deallocate Memory

Connect to Interrupt
Await Interrupt

Signal Interrupt
Disconnect from Interrupt

Send Message
Receive Message

Set Clock
Read Clock

System Dump
System Trace

Processes can be

A user

process 1is a process that is written by a user. It

performs a function directly for the user.

A system

process is a process that performs functions (or services)

for a user process.

System processes are supplied with

PCOS that provide basic device management services, and

extended I/0 services.

Processes can be created and destroyed dynamically.

RS PR L I N A
oy AP LI RPN P S-S D R S AR PG P S-S S e

Al d

R UW"W‘" B

3

bl S

~~~~~~~

The maximum number of processes that can exist
simultaneously is specified at system generation. The
current implementatioa of PCOS can handle up to 16
concurrent processes, Each process within PCOS has a
unique identification number (PID) associated with it.

Each process has a context associated with it. The
context of a process is the information that specifies the
current status of the process. The current values of the
processor registers, including the instruction pointer, and
the resources currently allocated to it define the context
of the process.

When a process' execution is interrupted, its
context is saved in the process control block (PCB)
associated with the process so that it can be restarted at
a later time. A PCB is a system data structure which is
allocated to a process when it is created. A PCB has two
ma jor sections: a process descriptor block (PDB); and an
interrupt save area (ISA). Table 2-2 describes the
contents of a PCB. The PDB contains information including
the process identification number, and the priority of the
process. The ISA provides a storage area for the process'
registers when it is interrupted.

During its existence, a process goes through various
process states, Figure 2-2 depicts the various states that
a process may go through during its existence.

A process is undefined until its existence is

LR i Ak S A I Bdiiad Siohod it i Yd A At S i




s

v- FrFrewerieys ‘xv.v_- ~ Ve v‘-\v-._v'_ v'_»v—_‘r_.v-\v—:r_n_?. gl agndn b Dasr .l -« - . P AEra e . - . Faibidiain i S S S )

13
Table 2-2. Process Control Block
Fommm e e +
! FTELD NAME ! DESCRIPTION !
Fommm e T it T +
! PROCESS DESCRIPTOR BLOCK: !
o e e - +
! SUCCEEDING_PCB ! The id of the next PCB on this queue. !
! ! This field is used to link PCBs on the !
! ! ready & delay queues, !
! 1 1
! PRECEEDING_PCB ! The id of the previous PCB on this !
! ! queue. This field is used to link !
! ! PCBs on the ready & delay queues. !
1 1 !
!t ID ! The PID associated with this PCB. !
! 1 1
! NAME ' A % character string which identifies !
! ! the process which this PCB represents. !
1 1 1
! PARENT ! The PID of the pareat process. !
1 1 1
! YOUNGER_SIB ! The PID of the process created by the !
! ! parent after this process. !
1 1 1
! OLDER_SI?3 ! The PID of the process created by the !
! ! parent before this process. !
! ! !
! CHILDREN ! The PID of the last process created by !
! ! this process. !
! ! 1
! PRIORITY ! The priority at which this process !
! ! executes. !
1 1 1
! STATUS ! The current status of this process: !
! ' running, ready, waiting, suspended, or !
! ! undefined. !
1 ' '
! BLOCKS ! The events this process is waiting on: !
! ! message, interrupt, and/or timeout. !
! ! This field is only meaningfull if !
! ! STATUS is waiting. !
1 ! 1
! WAKEUPS ! The events that have happened to this !
! ! process: message, interrupt, and/or !
! ! timeout. !
1 1 1
' MESSAGE_COUNT ! The number of messages queued for this !
! ! process. !
e e e e it ittt +
B R S e R N S o R R ot S




T T T TR NPT T TImmm—————~ RN S A G i A SRR SN IR A i A S S A S Shdi=Sed S i

14

Table 2-2. Process Control Block (continued)

e e +
! FIELD NAME ! DESCRIPTION !
Fomm e e - +
! MESSAGES ! A pointer to the first IPCCB (message) !
! ! for this process. !
! ! !
! DELAY ! A word which specifies the time, !
! ! in system time units, the process !
! ! is to be delayed. This field is !
! ! only meaningfull if STATUS is waiting !
! ! and BLOCKS is timeout, !
! ! !
! NEXT_PCB ! The id of the next PCB on either the !
! ! active or free queue. !
! ! !
! PREV_PCB ! The id of the previous PCB on either !
! ! the active or free queue. !
o +
! INTERRUPT SAVE AREA: !
o e +
! AX ! AX register save area, !
! ! !
! BX ! BX register save area. !
! ! !
! CX ! CX register save area. !
! ! !
! DX ! DX register save area. !
! ! !
! SP ! SP register save area. !
! ! !
! BP ! BP register save area. !
! ! !
!SI ! SI register save area. !
! ! !
' DI ! DI register save area. !
! ! !
' CS ! CS register save area. !
! ! !
' DS ! DS register save area. !
! ! !
! 58 ! SS register save area. !
! ! !
! ES ! ES register sa.e area. !
! ! !
1 IP ! IP register save area. !
! ! !
' FLAGS ! FLAGS register save area. !
Fommmmmm e - o - +




Cooe e T s e TR R T e e R LUTRTERE TR VYL v
R IS EREEER B R Pt A A A A A A S At anh ahe AR i gl LAl it et Jagec va-—.-—,r-v-,_,.‘

15

recorded in a PCB., When the information about a process
has been entered into a PCB, the process moves to the
suspended state. A process remains in the suspended state
until it is activated by another process. After it is
activated, a process moves to the ready state. A ready
process is inserted into a first-in, first-out priority
queue known as the ready list. As processes complete

execution, the process dispatcher removes the next ready

process from the ready list and assigns the processor to
it, A process is assigned to the processor by restoring
its registers from its ISA and then transferring control to
it. A process remains in the running state until it is
interrupted, waits for a message, is suspended by another

process, or completes its processing.

Fm e +
! undefined !
pmmmmmmmm - +
!
!
ettt +
' suspended !
Fommmmmmmmm - +
!
!
bmm e - +
! ready e bt e +
D e + !
. ! !
b ! !
b o + bom e~ +
o ! running R ! waiting !
Fomm e + pommm e +

-w
.

AW

Figure 2-2. Process State Diagram

o, 'Y. —y—i—
. L RN
PR T

b
.
]
2
»
.




———" V’-v.-,,,r—rr Ii—, 5
sl A L B

N S T T N N W W T W N —r—— T T T — v—:

16

Six primitives are provided to manage processes:
CREATE_PROCESS, ACTIVATE_PROCESS, SLEEP, SUSPEND_PROCESS,
DESTROY_PROCESS, and FIND_PROCESS. A process can create a
descendant process (child) using the CREATE_PRGCESS
primitive. First, a PCB is removed from the free PCB gqueue
and encoded with the information supplied in the call.
Then the new PCB is queued on the active PCB queue. After
creating a child process, the parent can activate it using
the ACTIVATE_PROCESS primitive, suspend it using the
SUSPEND_PROCESS primitive, or destroy it using the
DESTROY_PROCESS primitive. The DESTROY_PROCESS primitive
also destroys all descendents of the destroyed process. A
process can find a previously created process using the
FIND_PROCESS primitive.

The second category of primitives manipulate memory.
In the current implementation of PCOS, a fixed amount of
menory is lisked onto a free memory queue. Table 2-3

describes the format of a memory control block. The memory

Table 2-3. Memory Control Block

R e e ettt i et +
' FIELD NAWME ! DESCRIPTION !
Fomm e mmem— - it ettt e ater +
NEXT ! A pointer to the next MC3 in the free !

! memory queue. !

' 1

SIZE ! The size, in paragraphs, of this memorv !

! block. !

1 1

FILLER ' Forces size of MCB to be 16 byvtes ( 1 !

! ! paragraph). !
Fommm e o e - +

RER ]

......

R

R IS SR e N N S T T
R TR M Y R T A S . I A AT Y WA L WP  LA SAPEL . PN, R TP, P N




g Pl And Shet en ol e v

17

linked on the free memory queue is used to satisfy requests
for memory from processes.

Two primitives are provided to manage memory:
ALLOCATE_MEMORY, and DEALLOCATE_MEMORY. The
ALLOCATE_MEMORY primitive searches the free memory queue
for the first block of memory that satisfies the request.
If the amount of memory found is larger than the amount of
memory requested, it is split and the excess returned to
the free memory queue. The DEALLOCATE_MEMORY primitive
returns the specifed block of memory to the free memory
queue. If possible, the returned block is combined with
ad jacent memory blocks on queue to form one large block
of free memory.

The third category of primitives manipulate
interrupts. To redirect control after an interrupt
occurs, the Intel 8088 microprocessor uses an Interrupt
Vector Table (IVT)., The IVT starts at location O of
main memory and contains 256 interrupt vectors which are
numbered 0 - 255, Each interrupt vector can be loaded with
the address otf the interrupt-service routine that handles
that type of interrupt.

In order to manage the IVT, the kernel maintains an
Interrupt Vector Status Table (IVST). Table 2-4 describes
the contents of an entry in the IVST., There is one entry
in the IVST for each interrupt vector in the IVT.

During svstem initialization, interrupt vectors

PO

(ARSI St e Son 4 v o]

|

HEIF. ¥ |




......

..............

18

Table 2-4., Interrupt Vector Status Table Entry

tomm e ——— e it i L +
! FIELD NAME ! DESCRIPTION !
Fmmmmm - T e Eatatataes +
! AVAILABLE ! The status of this interrupt: allocated, !
! ! or unallocated (e.g. available). !
1 ! 1
! PID ! The PID of the interrupt handler process !
! ! associated with this interrupt. !
Fmmmmm o e +
0 - 254 are marked as available for use, and interrupt

vector 255 is marked as unavailable. Interrupt vector 255
is the interrupt vector used bf processes to accesé the
kernel. |

Four primitives are provided to manage interrupts:

CONNECT_INTERRUPT, AWAIT_INTERRUPT, SIGNAL_INTERRUPT, and

DISCONNECT_INTERRUPT. The CONNECT_INTERRUPT primitive
reserves an interrupt vector for a process and assigns an
interrupt handler to the interrupt vector. The process can
then use the AWAIT_INTERRUPT primitive to suspend its
execution until its interrupt handler uses the
SIGNAL_INTEZRRUPT primitive to activate it or a specified
time elapses. The DISCONNECT_INTERRUPT primitive cancels
the assignment of an interrupt vector to a process.

The fourth category of primitives manipulate
messages. Processes communicate with one another by
exchanging both commands and data. Processes exchange both
commands and data through the use of messages.

Hessages are the basic unit of information exchange




19

between processes. The interprocess communication (IPC)

facility of PCOS provides a flexible communication

mechanism which can be used to support communication

TN Www‘ MWWJ L

between processes, general network communication, and
resource sharing. The interprocess communication facility
provided by PCOS is a pure datagram facility. It neither
guarantees delivery of a message nor acknowledges its

receipt.

A message is delivered using an interprocess
communication control block (IPCCB). A IPCCB consists of
two parts: (1) a header; and (2) a body. The format of a
IPCCB is illustrated in Table 2-5. The message header
contains information which identifies the the process
sending the message, and the length of the body of the
wessage. The body of the message contains the information

being exchanged.

Table 2-5. Interprocess Communication Control Block
D ittt Dttt ettt +
! FIELD NAME ! DESCRIPTION !
e R et it +
! NEX ! A pointer to the next IPCCB in this !
! ! process' message queue. !
! ! !
! SOURCE ! The PID of the process which sent this !
! ! message. !
! ! !
! LENGTH ! The length, in bytes, of this message. !
' ! 1
! DATA ! The message. !
Y e T R o e - +

Two primitives are provided to manage messages:

AR CRARAEL PO
SRS PRAY L P,

s e e e e - oA ol A it et it B v i A e e A e Sttt S A e




RETIAR | A2

P ——

‘ LI

IS .
sttt T

-, Wi - -
[ D)
. '.'-’n",".'_‘.. .

N

ity
A Y

.y .

Pt et At a™

. o
PSR I «*
e AT N )

20

SEND_MESSAGE, and RECEIVE_MESSAGE. The SEND_MESSAGE
primitive sends the message specified to the designated
process. After the kernel allocates memory for an IPCCB
for the message, the message along with its length and the
PID of the sending process is copied into the IPCCB. The
IPCCB is then linked to the FIFO message queue of the
destination process., If the destination process is
awaiting a message and executes at a higher priority than
the sending process, it receives control of the CPU and the
sending process is inserted into the ready list, If the o
destination process is awaiting a message and executes at
a priority equal to or lower than the sending process, it b
is inserted into the ready list and the sending process
continues execution. And, if the destination process is
not awaiting a message, the sending process simply
continues execution.

The RECEIVE_MESSAGE primitive returns the message
at the head of the process’ FIFO message queue. The
message is first copied into the process' data space,
then dequeued from the message queue, and finally the
memory used to buffer the message is returned to the
system. If no messages are queued and no delay 1is

specified, control returns to the receiving process;

however, if a delay is specifed, the process doesn't

receive control until it receives a message or the delay

has elapsed. And, if an infinite delay is specified, the

arac I

e e o e . SR . e

\ 2 NI . - Lt e et e

LAY o0 WA U S ST ) e PRI P S WAL AT T I'e "A_!’L. a
a ala tia ala® o




R — e Sade s ot - I A BB T I R DI T Bt

process doesn't resume execution until it receives a
message.

The fifth category of primitives manipulate the
system clock. The system clock is initialized to 00:00:00
hours O ticks during system initialization. A system time
unit or tick is 1/20th of a second in duration,

Two primitives are provided to manage the system
clock: SET_CLOCK and READ_CLOCK. The SET_CLOCK primitive
sets the system clock to the value specified; while the
READ_CLOCK primitive returns the current setting of the
system clock.

And, the sixth category of primitives facilitate
debugging. The primitives which facilitate debugging are
SYSTEM_DUMP and SYSTEM_TRACE. The SYSTEM_DUMP primitive
produces a hexadecimal dump of the contents of the

registers and the specified memory block at the time of

the dump on the system printer. The SYSTEM_TRACE primitive
prints the message specified on the system printer.

The Basic I/0 Svstem. The Basic I/0 System (BIOS)

of PCOS is responsible for device management. Three device
drivers are included in the BIOS of PCOS: a console
driver, a disk driver, and a printer driver. The services
provided by each of the driver processes are listed in
Table 2-6.

Communication with the device driver processes that

form the BIOS of PCOS is achieved through the use of

e e s T P L S B e I S L TP SRR SRR I S & " e s
..... LT T T e et e . e L e TS o - LSRN
............ . Pt et AT - -,
.........

.




22

Table 2-6. Device Driver Services

- ———————— —— ————————— —— — — ——— i ——— - —— —————— - ——— ——— ————

:twwaPMQQ&rﬂmwk

- — . —— s —————— ——— ——— — ———— — - ——  ———————— . —————————,_————————————

Console Read a Character from Keyboard
Write a Character to Videc Monitor

Disk Read a Sector
Write a Sector
Reset Diskette System
Verify Sector
Format Disk

Printer Write Character to Printer
Reset Printer
Read Printer Status

messages., Basically, each device driver is a server

v e AR g g

process that is responsible for a specific system resource.
Each server process was developed using the Requestor-
Server Model (Brittonm & Stickel, 1980) as a guide. Figure

2-3 illustrates the basic form of a server process.

procedure terminal;
begin
loop
receive_a_message;
case message.,type of
when 0 => read_character;
when 1 => display_character;
end case;
send_a_reply;
end loop;
end terminal;

Figure 2-3. Example Server Process

Each server process (e.g., console device driver)

- . - - - - - B - . .~ v LT . - S .

N i RS,
W e e e T e L e . . - R - . B
| W PRSP AL ST STV WA WAL JRP S P UL I SR M P




A

ARG A D MACRAMICR SO A DR R ATt A/t Sl Bt g

.. v oo R e e e e e - ———
. Ve ., e, - L AR T v -, . - L) - CR ) LT e et O Mg a Tl e
AT A At PN S0P ISl AP AR RO SR PP A AT SO Ol J‘:‘(} ":'f:\‘:' el

e B4 A/hn A'a A % e e Soen A de Shmee Shten 8 i Snceis Zhegn ARl ek B oh A gk A uE Ak AR A e & e o e

T TR e ew—— DENCNE S s et grl Swe 2o s n Ak o

23

waits for a service request using the RECEIVE_MESSAGE
primitive. Once it has processed a service request, it
sends a reply message to the requestor using the
SEND_MESSAGE primitive. This sequence of operations
continues until the server is terminated.

The Extended I/0 Svstem. The Extended I/0 System

(XIOS) sequential disk file access. The File Server is the
only component of the XIOS. Table 2-7 lists the services

that are provided by the File Server.

Table 2-7. File Server Services

e — - T = —— - — R - e = ——— —— —— ——— —— -

File System Volume Mount a File System Volume
Dismount a File System Volume

File Connection Open File
Close File
File I/0 Read a Character from a File

Like the device d:ivers that form the BINS of PCOS,
the file server is also a server process. Other processes
can communicate with the file server through the use of
messages,

To open a file, a task sends an OPEN message which
conatins the name of the file to be opened to the file
server, The task then blocks itself by waiting for the

file server's reply. When the file server receives the

ORELT 1




B A L M i el Sl fed il el el g S o 4

SV AW v v,y

’.'.‘.'.'.'."." | RO
.

message, it interprets it, opens the file (if it exists),

and assigns a unique file id to it. The file server then

sends a completion message which contains the file id to

an w‘!‘\‘mﬂ‘m

the process. This causes the process to be rescheduled.
Using the file id assigned by the file server, the process
can now perform I/0 operations on the file.

The Command Language Interpreter. The system

operator or user interacts with PCOS through the command

I AR ey

language interpreter (CLI). The user issues commands to
the system through a command language which is interpreted Joves

by the CLI.

Table 2-8. CLI Commands

o - . —— —— —; — ———— ——— —— - —— - —————— ——— — — —— ——

COMMAND DESCRIPTION

DISMOUNT Mounts a file system volume on disk
drive 0.

DISPLAY Displays the contents of a file in

hexadecimal on either the system
console or the printer.

HOUNT Dismounts a file system volume from
disk drive O.

PRINT Prints the contents of a file on the
printer.

TIME Displays the current time.

TYPE Displays the contents of a file on the

system console.




- - -

e T T T Te

Wt

LA
.

e b v . .
LA VA

al YR

:
g
:

LA T K S A AP L N o A i = A SRt it St S A S i S A i M e o

. RSt A A s A e RS SRR

—

25

writing '$ ' to the system console. A command line
consists of a command name terminated by a carriage return.
Table 2-8 lists the commands which are provided by the CLI.
Once the user enters a command line, the CLI checks to see
if the command is valid. If it is, the command is then
executed; if it isn't, the CLI displays an error message
and then prompts the user for another command line. The
user is prompted for any arguments that a command needs

to perform its function.

When a command has completed execution, the CLI hd

a.

e

prompts the user for another command line.

The Executive Process. The initialization or

startup of both system and user processes is accomplished
by the Executive Process (EXEC). After all system data
structures have been initialized by the kernel
initialization routine, control is passed to EXEC. EXEC
then creates and activates the other processes that make up
PCOS using the CRZATE_PROCESS and ACTIVATE_PRCCESS kernel
primitives. Once it has started the other system
processes, EXEC suspends execution awaiting a system

termination message.




R R -
i @

v

AT
PRIV Y

26

CHAPTER III

FURTHER RESEARCH AND DEVELOPMENT

The need for the following modifications to the PCOS
kernel was made apparent during the development of the BIOS
device driver processes.

The current implementation of the PCOS kernel does
not include primitive operations for exception management.
An exception occurs whenever a kernel primitive fails.

Each kernel primitive returns a condition code that
indicates the success or failure of an operation.
Currently, processes must check the condition code after
each kernel call in order to determine if an exception
occurred. In order to reduce the amount of checking a
process must perform, the kernel should be modified to

include exception management primitives.

Table 3-1. Proposed Exeception Management Services

- v - — - - —— - —— ——— - — - - —————

Exception Manageuent Create Exception Handler
Destroy Exception Handler

—— > ———————— ———— ———— ———— " ————— - — i ————————— ——— - ——

Processes should be able to specify an exception

handler that is to receive control whenever an exception

I




gAY Y

- ) werars

27

occurs. Table 3-1 lists the exception management services
that the kernel should provide.

Another operation which the PCOS kernel does not
currently support is the selective receipt of messages.
This seems to be the greatest deficiency of the PCOS
kernel. Consider the following scenario. Process A sends
a message requesting some service to Process B, and then
continues processing. In order to fulfill the request,
Process B sends a request message to Process C and then
waits for a response message from Process C. Before
Process C can respond, Process A issues another request
message to Process B. Since Process B is waiting for a
message, it is awakened and given the second request
message from Process A. However, Process B is expecting a
response message from Process C, not a request message from
Process A.

There are two possible solutions to this problenm.
The first solution is to require processes internally queue
messages that they are not ready to process. The second
solution is to modify the kernel to include a selective
message receipt primitive, The second solution is
recommended since it simplifies the construction of server
processes,

This solution can be implemented by modifying the
receive_message primitive to only receive a message from a

specified process, and by adding a receive_any_message




e

28

primitive that receives a messuge from any process.
Once the above modificacions are made, the kernel

will be suitable for continued development of PCOS.

o

- R S S T SN e e e A A e PR I S S A R Y Tt .
P S e O I TR P [ A ool o
PRy Py, I

SR -8 DRI L AN RN D D Sl -

~ Sl

R ]
A A I S A P e
el NP PN TN S SO N i Wi . ralas all




S e . G . e o i ciians it it A Sl s oy B e e sk sk A e o o L e el . am
. L e LARE i Al g b B Thadh 2 i 2o i S s -

£e )

‘o

.

»

» ‘

A

A
S

v, - .

LW e, e e e

AT Pt N Sl i~ i+ MR DA hael 4 oWl AR ovi o

29

CHAPTER IV

CONCLUSION

This thesis documents the design and implementation
of an operating system for the IBM PC., The purpose of this
research project was to develop an operating system which
could be used to provide students with a better
understanding of operating system principles.

After discussing the motivation for the PCOS
project, the development of PCOS was discussed.

First, the

requirements for PCOS were discussed. The requirements for
PCOS were established after reviewing the capabilities

offered bv several commercially available operating

systems.,
dext, the design criteria and the overall design of
PCOS was discussed. The design of PCOS is based on the

kernel approach. New user requirements such as the need to
support a new I/0 device can be easily supported through
the addition of new processes. In retrospect, we believe
the kernel-based design of PCOS provides a good base for
further research.

Then, the implementation of PCOS was discussed.
PCOS was designed and implemented on an IBM PC. Because of

the work needed to construct a complete operating system,

:1e
conigid

-4




s

-t

- YRR -

30

this project focused on the design and implementation of
the kernel and the low-level device drivers. The kernel
provides a set of primitive operations that support
cooperation of asynchronous processes. And, the device
drivers provide support for a video display, kevboard,
disk drive, and printer. A simplistic file server and
command language interpreter were also developed.

Modifications and extensions to PCOS were then
presented. The modifications presented are necessary in
order to refine the current implementation of PCOS on
the IBM PC. The full implementation of the File Server,
and the Command language Interpreter has been left for
future research efforts.

The author feels that PCOS is a valuable pedagogical
aid. Althougnh PCOS is not nearly as complex as 0S/MVS or
Unix, it does contain manv of the basic concepts found in
conmmercially available operating svstems. Due to 1its more
simplistic nature, a detailed description is easier to
provide and thus easier for students to understand.

This research project incorporated the use of
various techniques in several topic areas and resulted in a
challenging and rewarding experience for the author. The

author hopes that this project will generate continued

interest in the subject of operating svstem design.




..... g g T e e~y

31

2 REFERENCES
+ Agoston, Max K. "A Microprocessor Operating System: The
, Kernel." Dr. Dobb's Journal, 2 (September 1977), 20-
% 40.
{ v
Banahan, Mike, and Andy Rutter. The Unix Book. New York:
p John Wiley & Sons, Inc., 1983.

Bauer, Henry R. "The Design of a TI980A Operating System
for Classroom Use." ACM SIGCSE Bulletin, 7, No. 1,
(February 1975), 20-22.

Bauer, H. R., G. D. Thomas, and J. Van Baalen. "A
Multiprogramming Operating System for the TI980A."
Proceedings of ACM 76, 1976, Houston, Texas, pp. 247 -
251.

rafgd

MR AR
L 2, ”‘ - ¢

Baver, D. L., and H. Lycklama. "MERT - A Multi-Environment
Real-Time Operating System.” Proceedings of the Fifth
Svmposium on Operating Svstems Principles, 19-21
November 1975, Austin, Texas, pp. 33-42.

Brinch-Hansen, Per. "The Nucleus of a Multiprogramming
System." Communications of the ACM, 13, No. 4 (April
1970), 238-241, 250.

Brinch-Hansen, Per. Operating Svstem Principles.
Englewood Cliffs, N. J.: Prentice-Hall, 1973.

Britton, Dianne E., and Mark E. Stickel. "An Interprocess
Communication Facility for Distributed Applications."
IEEE COMPCON 80, 23-25 September 1980, Washington,
D.C., pp. 590-595.

3urgett, Kenneth, and Edward F. O'Neil. "An Integral Real-
Time Executive for Microcomputers.”" Computer Design,
. | 16, No. 7 (July 1977), 77-82.

Crowley, Charles. "The Design and Implementation of a New
UNIX Kernel." AFIPS Conference Proceedings, Vol. 50.
4-7 Mayv 1981, Chicago, Illinois, pp. 2653-271.

Deitel, Harvey M. An Introduction to Operating Svstems.
The Svstems Programming Series. Readineg, Ma.: Addison- |
: Wesley, 1983. !

e



s, 4

o«
e

AR MO

TSN

Faro, A., G. Messina, and A. Serra. "A Network Operating
System for Local Computer Networks." Proceedings of

the IEEE Real-Time Systems Symposium. 8-10 December
1981, Miami Beach, Florida, pp. 13-21.

Frank, G. R., and C. J. Theaker. "The Design of the MUSS
Operating System.”" Software-Practice and Experience,
9, No. 8 (August 1979), 599-620. (a)

Frank, G. R., and C. J. Theaker. "MUSS - The User
Interface."” Software-Practice and Experience, 9, No. 8
(August 1979), 621-631. (b)

Freedman, A. L., and R. A. Lees. Real-time Computer
Systems. Computer Systems Engineering Series. New
York: Crane, Russak & Company, Inc., 1977.

Garetti, P., P. Laface, and S. Rivoira. "On the
Development of a Distributed Operating System Kernel
for Real-Time Applications." Proceedings of the
IFAC/IFIP Workshop on Real Time Programming. 31 August-
2 September 1981, Xyoto, Japan, pp.l07-114.

Gorski, J. "KRTM -- A Kernel Which Supports Real Time
Multiprograms.”" Proceedings of the IFAC/IFIP Workshop
on Real Time Programming. 14-16 April 198G, Schloss
Retzhof, Leibnitz, Austria, pp. 9-18.

Hammond, Richard A. "Experiences with the Series/1l
Distributed System." IEEE COMPCON 80. 23-25 September
1980, Washington, D. C., pp. 585-589.

Haridi, S., and Lars-Erik Thorelli. "Design and Use of a
Simple Monitor for Small Computers.” Proceedings of
the IFAC/IFIP Workshop on Real Time Programming. 19-21
June 1978, Mariehamn/Aland, Finland, pp. 35-40.

Holt, R. C. Concurrent Fuclid, The Unix Svstem, and Tunis.
Addison-Wesley Series in Computer Science. Reading,
Massachusetts: Addison-Wesley Publishing Company, Inc.,

1983.
Kahn, Kevin C. "A Small-Scale Operating System Foundation
for Microprocessor Applications." Proceedings of the

IEEE, 66, No. 2 (February 1978), 209-216.

LaGarde, J. M., G. Olivier, and G. Padiou. "An Operating
System Course Project." ACM SIGCSE Bulletin, 13, No. 2
(June 1981), 34-48.

......




TN R

33

Lane, Malcolm G. "Teaching Operating Systems and Machine
Architecture -- More on the Hands-on Laboratory
Approach." ACM SIGCSE Bulletin, 13, No. 1 (February
1981), 28-36.

Lions, J. "An Operating System Case Study." Operating
Svstems Review, 12, No. 3 (July 1978), 46-53.

Lycklama, H., and D. L. Bayer. "UNIX Time-Sharing System:
The MERT Operating System." Bell System Technical
Journal, 57, No. 6 (July-August 1978), 2049-2086.

Madnick, S. E., and J. J. Donovan. Operating Systems.
New York: McGraw-Hill, 1974.

Mark, Anthony, Otto Eggenberger, and Jurgen Nehmer.
"Experiences in the Design and Implementation of a
Structured Real-Time Operating System." Proceedings of
the IFAC/IFIP Workshop on Real-Time Programming,
Eindhover, Netherlands, 20-22 June 1977, 133-137.

McCharen, Edith A, "MVS in the Classroom.”™ ACM SIGCSE
Bulletin, 12, No. 1 (February 1980), 81-82.

McKeag, R. M. Studies in Operating Svstems. New York:
Academic Press, 1976.

Pohjanpalo, Hannu. "MROS -~ 68K, a Memory Resident
Operating System, for MC68000." Software-Practice and
Experience, 11, No. 8 (August 1981), 845-852.

Seidel, H. A., and G. Grebe. "A Xernel for a Concurrent
Pascal Operating System." Operating Svstems: Theorv
and Practice. D, Lanciaux (ed.). North-Holland

Publishing Company, 1979,

Shaw, Alan. "A Multiprogramming Nucleous with Dynamic
Resource Facilities." Software-Practice and
Experience, 5, No. 3 (July-September 1975), 245-267.

Sincoskie, W, David, and David J. Farber. "SODS/0S: A
Distributed Operating System for the IBM Series/1."
Operating Svstems Review, 14, No. 3 (July 1980), 46-55.

Soloman, Marvin H., and Raphael A. Finkel. "The Roscoe
Distributed Operating System." Proceedings of the
Seventh Svmposium on Operating System Principles,
Pacific Grove, California, 10-12 December 1979, 108-
114,

A |




Thorelli, Lars~Erik. "A Monitor for Small Computers."
Software-Practice and Experience. 8, No. 4 (July-
August 1978), 439-450.

Wadland, Kenneth R. "Operating System Projects for
Undergraduates.”" ACM SIGCSE Bulletin, 12, No. 1
(February 1980), 75-80.

Zarrella, John, ed. Microprocessor Operating Systems.
Suisun City, California: Microcomputer Applications,
1981.

Zarrella, John, ed. Microprocessor Operating Systems.
Vol. 2. Suisun City, California: Microcomputer
Applications, 1982.




.

4

.T.",‘,"’IY?.'.

o

Taen ol .
S Ce e ae e e e e e
AR P PO A SIS

APPENDIX A

KERNEL PRIMITIVES




36

ACTIVATE_PROCESS

FORMAT:

status := activate_process(process);

INPUT PARAMETERS:

process A word containing the id of the process
to be activated.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The ACTIVATE_PROCESS primitive activates a process if it
is suspended.

CONDITION CODE:

CC_OK No exceptional conditions.

CC_EXIST The specified process does not exist.

CC_ACTIVE The specified process is already
active.

LR APY §

e S S R T
COR P T
RPN RIS, Bt




EAMERAL A A Al Al A S S /A Siadl i Jhn s o B alh A aad s
Pl A e A e

CARIACIN fhe fhe Ry Bie 40 S le D 00 AN A-A 8 A0 LA 80 By

.......

ALLOCATE_MEMORY

FORMAT:

INPUT PARAMETERS:

amount

memory

status

DESCRIPTION:

CONDITION CODES:

CC_OK

CC_MEMORY

[|_MNEMEMROME

v v v e v -y,
SR

LTI,

'y

OUTPUT PARAMETERS:

37

status := allocate_memory(amount,

memory) ;

A word that specifies the number of
paragraphs (a paragraph is 16 bytes)
requested.

A pointer in which PCOS will return the
address of the first available byte of
the allocated memory block.

A word which contains the condition
code generated by this primitive.

The ALLOCATE_MEMORY primitive returns a pointer to the
first available byte of the requested memory block.

No exceptional conditions.

There is not enough memory available to
satisfy the request.

—

it

PR

L v e e Y ey "
* fet ARSI NN

gL

AN A AR A S W e
BRSPS I [T P S N S o COCIRNCIL P SR N
SOOI it Nl W N N T IR NN R - SN

o .o ] ‘_E\_\ WA S IR AN At g e N T




e PR i e ag G A T s

38

AWAIT_INTERRUPT

FORMAT:

status := await_interrupt(delay);

INPUT PARAMETERS:

delay A word which specifies the amount of
time the process is willing to wait for
an interrupt. If zero, the process is
willing to wait indefinitely. If
positive, delay indicates the number of
system time units the process is
willing to wait. There are 20 system
time units per second.

OUTPUT PARAMETERS:

status A word which contains the condition
caode generated by this primitive.

DESCRIPTION:

The AWAIT_INTERRUPT primitive causes the currently
executing process to be suspended until the interrupt
with which it is associated occurs or the delay is
exhausted.

CONDITION CODES:

tisal

CC_OK No exceptional conditions.
CC_TIMEOUT A timeout occurred.
e T e e e e L e e e =3




-~ S YR TLTITLY,

39
CONNECT_INTERRUPT
FORMAT:
status := connect_interrupt(interrupt,
handler );
INPUT PARAMETERS:
interrupt A word indicating the interrupt vector
with which the process is to be
associated.
handler A pointer to the first instruction of
the interrupt handler,
OUTPUT PARAMETERS:
status A word which contains the condition
code generated by this primitive,
DESCRIPTION:
The CONNECT_INTERRUPT primitive assigns a process and
an interrupt handler to an interrupt vector.
CONDITION CODES:
CC_OK No exceptional conditions.
CC_EXIST The specified interrupt vector does not
exist.
CC_ASSIGN The specified interrupt vector is

already assigned an interrupt handler.

R e e PR L e T N e e e T T T e e ———

.............. At et e T e e et T T T i T T T T
et et et W, o' o QC Ol T TP S R L S CRRT N R L et e Tata Tl . at -

T PRSP L AR, AP A PO AT A At P N A T A T T A Tt Sy S S T S e A I N A P L NS




T e e e s e e e A e T T e T T T RN R A8 S IR R A TSI AR DR 2 R St Aok S It Shos B Sen ok e Sasc s dos G- i - e oo ~vy
TR
40
CREATE_PROCESS
FORMAT:
status := create_process(process,
name,
priority,
start_address,

E b stack_address,

.’ stack_size )

S INPUT PARAMETERS:

L-.

& name A field which contains a string of six
ASCII characters giving the name of the
process,

X priority A word that specifies the priority of

. the new process.

start_address A pointer to the first instructions of
the new process.
stack_address A pointer to the base of the new
process' stack.
stack_size A word containing the size, in bytes,
of the new process' stack.
OUTPUT PARAMETERS:
process A word in which PCOS will return the
identification aumber for the new
process.
status A word which contains the condition
code generated by this primitive.
DESCRIPTION:

The CREATE_PROCESS primitive creates a process and
returns an id for it.

CONDITION CODES:

CC_OK No exceptional conditions.

B T T IR . ST
BRI LI SN P L T

K
.. ., - A
P AP AP AP IOATAE TP P PR P




MRS S Sl Tl Al Snt Jauiiou sesh muls Jenih ot e, :l

41

CC_LIMIT The new process would except the

maximum number of process allowed by
the system.

vt ey
+

DR ]

.
.

e \:‘\(_‘.'_.‘_ St e T e e e e e e s T T T T s T
RS R W 3 T )N U S L RS I e DR PO PRI SRR U S PSR K. e S Ba

. - " » » -
Bt Bee it B B B S




DEALLOCATE_MEMORY

FORMAT:

status := deallocate_memory(memory);

INPUT PARAMETERS:

memory A pointer to the first byte of the
memory block to be retruned to the
system.

OUTPUT PARAMETERS:

‘ status A word which contains the condition
= i code generated by this primitive.
-
DESCRIPTION:
&i The RELEASE_MEMORY primitive returns a block of memory to

the system.

CONDITION CODES:

CC_0OK No exceptional conditions.

CC_EXIST The value contained in memory does not
point to a valid memory block.

:

- ;.f _--”..- \- .
BN A I R T T T A T T T SO R S S L PN PR AL RN A e T e e T e T e
S I S Sy I ey | AT WA IR WA VRSP WAE WA SRR 1, R W W) A IR A sat e’ A O e e e e et e e S




DESTROY_PROCESS

FORMAT:

status := destroy_process(process);

INPUT PARAMETERS:
process A word containing the id of the process
to be destroyed.
OUTPUT PARAMETERS:
status A word which contains the condition
code generated by this primitive.
DESCRIPTION:
The DESTROY_PROCESS primitive deletes the specified
process from the system. Tihe process must be suspended
before it can be destroyed.
CONDITION CODES:
CC_oK No exceptional conditions.

CC_EXIST The specified process does not exist.

CC_STATE The specified process is not suspended.




CC_OK No exceptional conditions.
CC_EXIST The specified interrupt vector does not
exit.
CC_ASSIGN The specified interrupt vector 1s not
currently assigned an interrupt
handler, or is not assigned to the
process.
P e e R e et T N AR AP O GG T T T, R
VSR YIRS A S e — e e e AR A :'-:":L"l:“:."L"&'A‘_"‘:q.; it :(:«':'KL"_' RO

FORMAT:

DISCONNECT_INTERRUPT

Rl A s Jdant latn diie daspediass SARriiar il vt SaAdh SEVA Avall e S0l 0l gy o NEtd ——y—

44

status := disconnect_interrupt(interrupt);

INPUT PARAMETERS:

interrupt

A word specifying the interrupt vector
from which the process is to be
disconnected.

OUTPUT PARAMETERS:

status

DESCRIPTION:

The DISCONNECT_

of the process

CONDITION CODES:

A word which contains the condition
code generated by this primitive,

INTERRUPT primitive cancels the assignment
to an interrupt vector.




vvvvv

45

FIND_PROCESS

FORMAT:

status := find_process(process,

name )
INPUT PARAMETERS:
name A field which contains a string of six
ASCII characters giving the name of the
process.
OUTPUT PARAMETERS:
process A word in which PCOS will return the id

of the process whose name is identical
to the identifier contained in name.

status A word which contains the condition
code generated by this primitive.
DESCRIPTION:

The FIND_PROCESS primitive searches the queue of process
known to PCOS. 1If a process is found whose name 1is
identical to the process name contained in name its id is
returned in process. Otherwise, an CC_EXIST exceptional
condtion occurs.

CONDITION CODES:

CC_OK No exceptional conditions.

CC_EXIST The specified process does not exist,




46

READ_CLOCK

FORMAT:
status := read_clock(hours,
minutes,
seconds,
ticks);
INPUT PARAMETERS:
none
OUTPUT PARAMETERS:
hours A word containing the present hour,
minutes A word containing the present minute.
seconds A word containing the present second.
ticks A word containing the present tick.
status A word which contains the condition

code generated by this primitive.

DESCRIPTION:

The READ_CLOCK primitive returns the current setting of
the system clock.

CONDITION CODES:

CC_OK No exceptional conditions.




RECEIVE_MESSAGE

FORMAT:
status := receive_message(source,
message,
size,
delay );
INPUT PARAMETERS:
nessage A message buffer.
size A word containing the size of the

message buffer.

delay A word which specifies the amount of
time the process is willing to wait for
a message.

OUTPUT PARAMETERS:

source A word containing the process id of the
process that sent the message.

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:
The RECEIVE_MESSAGE primitive returns a message to the
calling process.

CONDITION CODES:
CC_OK No exceptional conditions,

CC_TIMEOUT A message was not received before the
delay was exhausted.

...................
...................




ROV S Aak, Sui Al i APy i il Sutie e Al Sl A, Al SR LN Sl ot S A S v L VLT TR T TR TN

SEND_MESSAGE

FORMAT:

status := send_message(destination,

message,
size )
INPUT PARAMETERS:
destination A word containing the id of the process to

which the message is to be sent.
message A message buffer.
size A word containing the size of the
message buffer.
OUTPUT PARAMETERS:
status A word which contains the condition
code generated by this primitive,.
DESCRIPTION:
The SEND_MESSAGE primitive sends a message to the
specified process.
CONDITION CODES:
CC_OK No exceptional conditions.

CC_EXIST The specified process does not exist,

............
...............




......

49
SET_CLOCK
FORMAT:
status := set_clock(hours,
minutes,
seconds,
ticks);
INPUT PARAMETERS:
hours A word containing the new hour value.
minutes A word containing the new minute value.
seconds A word containing the new second value.
ticks A word containing the new tick value.
OUTPUT PARAMETERS:
N status A word which contains the condition
. code generated by this primitive.
: t
. DESCRIPTION:
- The SET_CLOCK primitive sets the sytem clock.
- | CONDITION CODES:

CC_OK No exceptional conditions.




: 50
: [
- SIGNAL_INTERRUPT
- FORMAT:
) status := signal_interrupt(interrupt);
INPUT PARAMETERS:
interrupt A word indicating the interrupt vector
whose process isto be signaled.
OUTPUT PARAMFTERS:
status A word which contains the condition
code generated by this primitive.
DESCRIPTION:
The SIGNAL_INTERRUPT primitive allows an interrupt
handler to activate its associated interrupt process
. “8L,
CONDITION CODES:
CC_OK No exceptional conditions,
CC_EXIST The specified interrupt vector does not
exist.
CC_ASSIGN The specified interrupt vector is not

assigned an interrupt process.

................................................




r AR R Da A ARSI iy M T et aSUC A ol it SRR APV N 2ot DA I e (S d - Rl el SN e g R Sy AL T A e KA r"ﬂ-

51
N SLEEP
S
. FORMAT:
status := sleep(delay);
INPUT PARAMETERS:
delay A word which specifies the number of
system time units the process wishes to
1 be asleep. There are 20 system
. time units per second,.
N OUTPUT PARAMETERS:
g status A word which contains the condition
S code generated by this primitive,
DESCRIPTION:
- The SLEEP primitive causes the currently executing process
x to suspend its execution for a specified amount of time.

CONDITION CODES:

CC_OK No exceptional conditions.




52

SUSPEND_PROCESS

FORMAT:

status := suspend_process(process);

INPUT PARAMETERS:

process A word containing the id of the process
to be suspended.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SUSPEND_PROCESS primitive suspends a process.

CONDITION CODES:

CC_OK No exceptional conditions.
CC_EXIST The process indicated could not be
found.




PR

a 0 T R TR

AN A AR NN ML GRS A R

4.

SYSTEM_DUMP

FORMAT:

INPUT PARAMETERS:

starr_address

stop_address

OUTPUT PARAMETERS:

status

DESCRIPTION:

CONDITICN CODES:

CC_OX

status := system_dump(start_address,

The SYSTEM_DUMP primitive produces a snapshot of the
contents of the registers and the specified memory block.
The dump is displayed on the system printer.

No exceptional conditions.

stop_address );

A pointer containing the address of the
first byte to be displayed.

A pointer containing the address of the
last byte to be displayed.

A word which contains the condition
code generated by this primitive.




54

SYSTEM_TRACE

FORMAT:

status := system_trace(message);

INPUT PARAMETERS:

message A character string.

OUTPUT PARAMETERS:

status A word which contains the condition
code generated by this primitive.

DESCRIPTION:

The SYSTEM_TRACE primitive displays the specified
message on the system printer. -

CONDITION CODES:

CC_OK No exceptional conditions.




M lra e R IPS USO8 SRS BALES S Ee il
T 1 A ~ : ;

Av..'.'.“ FEF AR AR ‘n

-

P

\1v'-fff'l

’

— TR,
fl

12-85




